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Abstract. We discuss some difficulties which arise in recent proposals to extend the inverse 
scattering transform method to nonlinear quantum field theory. In particular, for the 
nonlinear Schrodinger equation, we show that the usual classical methods for obtaining the 
Poisson brackets of the scattering data reach an impasse if they are extended to find the 
commutators of the corresponding quantum operators. 

1. Introduction 

Exactly soluble nonlinear models are rare in mathematical physics; consequently their 
study is a valuable tool in developing general methods and testing the results of various 
approximation schemes. Since the advent of the 'inverse scattering transform' (IST) 

method for the solution of a class of nonlinear partial differential equations, a 
considerable body of literature has been built up related to the solution of these classical 
field problems. Furthermore, for the nonlinear Schrodinger equation there have been 
several papers which propose the use of similar methods for a quantum field (Kaup 
1975, Thacker 1978, Thacker and Wilkinson 1979, Creamer et a1 1980, Sklyanin and 
Faddeev 1979, Sklyanin 1979, Sklyanin et a1 1980), and these have shown some 
interesting connections between the operators which emerge from IST and the eigen- 
states of the many-particle Hamiltonian, which may be written down explicitly 
(McGuire 1964, Yang 1967,1968). Thacker and Wilkinson (1979) show that IST leads 
to operators which create ( N  + 1)-particle states from N-particle states. Similar results 
have been reported by Sklyanin (1979), who computed directly the effect of the 
operators OIi the N-particle Bethe eigenstates. In their !atest work on the sine-Gordon 
equation, Sklyanin et a1 (1980) work on a lattice and choose a particular (Schrodinger) 
representation of the canonical quantisation rules, which avoids the problems to which 
we allude in this paper, although it raises new questions to which they refer. 

Thacker and Wilkinson (1979) stop short of giving both the normalised creation and 
annihilation operators together with a derivation of their commutation relations, and in 
fact they mention some difficulties which stand in the way of determining the properties 
of the annihilation operators (the operators b"(5)  of their paper). In their latest paper, 
Creamer et a1 (1980) appeal to the work of Sklyanin and Faddeev for the desired 
commutation relations rather than trying to use IST directly. We had also addressed 
ourselves to this problem, with the object of overcoming the difficulties found by 
Thacker and Wilkinson. Unfortunately our investigations using IST lead, not to the 
desired results, but to an impasse. This impasse is brought about by the fact that the 
asymptotic forms which are an essential feature of IST cannot properly be defined in the 
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146 B Davies 

quantum field case: furthermore, if this point is ignored, then we reach a set of 
fundamental inconsistencies. Because of the negative conclusions which are drawn in 
this paper, we do not relegate technical details to an appendix since they are the central 
point of the paper. 

2. Key results for a classical field 

There is a diversity of notation and terminology in the literature on IST, so we will 
reiterate some of the key results in this section. We have been particularly indebted to 
the papers of Ablowitz et a1 (1974) and Zakharov and Shabat (1975) (referred to as 
AKNS and zs respectively), but we use notation which is closer to that of Thacker and 
Wilkinson because of the context of our work. The nonlinear Schrodinger equation is 

i$, = -+xx +2c2$"$+ (2.1) 

and the IST method maps the unknown solution $ onto a pair of auxiliary functions 
which satisfy the linear differential equations 

v lx  - &v1= icvz$ v2x +tist.,= -ic$*vl. (2.2) 

Throughout we will use lower-case letters for classical fields and the upper-case 
equivalents for the corresponding quantum field. Equations (2.2) were first proposed 
by zs, and we will call them the zs equations. Following AKNS (except that we use x 
rather than 4 for the second independent solution of the zs equations), we define 
fundamental solutions by imposing the asymptotic conditions 

for the first solution, and 

for the second. A further pair of solutions, denoted 4 and i, are obtained by writing 

All of these definitions rely on some assumption regarding the asymptotic form of $, 
which is necessary so that the right-hand side of the zs equation may be neglected for 
large 1x1. 

Iteration of the zs equations gives the fundamental solutions as 

41b) e -- c 2 ,  dxl . . . dx, dy, . . . dy, B(xl < y1 < . . <x, < y, < x )  
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X Z ( X )  eigX” = F c2” J dxl . . . dx, dyl . . . dy, e(x < x l  < y1 . . . < x, < y n )  

~ e x p [ i E ( x l + .  . . +x, - y 1 .  . . - yn)l$*(xl) . . . $*(x,)$(yd . . . $ ( y n ) .  

The asymptotic forms of these functions define a set of ‘scattering data’ via 

and explicit formulae for the coefficients a (6) and b (5 )  may be obtained by substituting 
the iterated solutions; we shall use this approach in the next section. It has been shown 
(Zakharov and Manakov 1975) that the mapping from the unknown function $ to the 
scattering data is a canonical transformation when the original equation is cast in 
Hamiltonian form and that the new variables are action-angle variables. Thus we have 
a completely integrable nonlinear dynamical system, and the natural question is how 
this fact may be used to solve the corresponding quantum field problem. 

3. Quantum fields 

The quantum field equations are 

together with the canonical commutation relations 

(3.2) 

Now it is intuitively clear that we cannot use the zs equations with the asymptotic 
conditions (2.3) and (2.4) to define auxiliary quantum fields, since the commutation 
relations (3.2) preclude the assumption that q is negligible for sufficiently large 1x1. Of 
course, the effect of the operator on any particular state vector may become 
negligible in this limit, but this is not equivalent to the assumption that the operator 
approaches the zero operator. This is precisely the difference between strong and weak 
convergence for operators (Bachman and Narici 1966), and Sklyanin notes that his 
asymptotic conditions are to be understood in the weak sense. We will return to this 
point; for the moment we avoid it by using the iterative solutions (2.6) to define the 
auxiliary fields which were written there so that the substitution $ + 9 leads to normal 
ordering. A ( [ )  and B([) are defined similarly: 
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dxi . . . dx, dyi . . . dy,-i @(xi < y i  . . . < yn- i  < x,) 
n 

B ( [ )  = -i C2n-1 

x exp[it(xl + . . . + x, - y 1  . . . - yn-l)]q'(xl) . . . qt(x, , )q(y1)  . . . ~ ( y ~ . . ~ ) .  
(3.4) 

Consider now the commutators of A(.$) and B(.$) with an arbitrary operator 
Looking first at A(.$),  the nth term in the expansion depends on 

 XI) . . . q'(x,)T(yl) . . . q ( y , ) ,  A]. (3.5) 

As was observed by Thacker and Wilkinson, the ordering introduced by the multiple 
step function enables us to write the commutator as 

[ ~ t ( ~ i ) q ' t ( ~ 2 ) q ( ~ l ) q t ( ~ 3 ) q ( ~ 2 )  . . . q ( y n - l ) Y ( y n ) >  d l 1  (3.6) 

and in evaluating [Tt(xj)V(yj-l), A] we may use the fact that [P(x) ,  qT(x ' ) ]  is a 
c-number, together with the Jacobi identity, to write 

Hence if we define F ( x )  and G(x)  by 

we find that the commutator (3.5) is 

A tedious but straightforward calculation shows that when we substitute this into the 
integral (3.3) we have all of the terms of order c Z n  in the expansion of an integral 
involving the auxiliary functions, consequently 

All of this was noted by Thacker and Wilkinson, except that they restricted the operator 
A to one of A(.$), B ( t ) ,  At(.$) or B t ( t )  so as to write their results in terms of functional 
derivatives, but this is not necessary and leads to undue complication. 
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+.  . . 
+v' \v ' (xl) .  . . v't(x,-l)v'(yl). * * v'(y,-l)G(xm) (3.11) 

and again a straightforward calculation leads to the formula 

[B(5 ) ,  A I =  -ic I dx (@~(x)F(x)X: (x)+%(x)G(x)X: (XI) .  (3.12) 

This result calls for some comment, since our conclusions differ from those of Thacker 
and Wilkinson. As they observe, there are terms in (3.11), when G(x)  is non-zero, 
involving the operator products 

v '+ (X,+1) .  . * v"t(x,)v'(xm) 9 . . VT(X,-l) (3.13) 

and for these the operator ordering does not coincide with the ordering of the variables 
in the step function in (3.4). However, our result is correct, because the adjoints of X1 

and Xz are 

X; (x) ei6x/2 = i c2*-l I dxl . . . dx, dy2. . . dy, 
n 

x O(x < x1 < y2 < x2 < , . . < y ,  < x,) exp[i[(xl + . . . + x, - y 2  - . . . - y,)] 

x *+(XI) . . . @(x,)v'(yz) . . . W y , )  

xi (x) e = 1 c2, I dxl . , . dx, dyl . . . dy, 
f l  

(3.14) 

x e ( x < y l < x l . .  . < y n < x n ) e x p [ i ( ( x 1 + . . . + x , - y 1 - .  . . -y , ) l  
x v ' + ( X l )  * * . v ' + ( x , ) w y l )  . . * W y , )  

after we have interchanged the meanings of the variables xi and yi so as to retain the x's 
for the creation operators and the y ' s  for the annihilation operators for use with (3.1 1). 
This change of variable names, which is necessitated by the fact that the creation and 
annihilation operators are interchanged when we take the adjoint, brings about 
precisely the ordering which is needed for the commutation relation (3.12) to work out 
correctly. 

On setting A to v' and v", we find immediately that 

(3.15) 
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4. The auxiliary fields 

The fundamental results (3.10) and (3.12) involve the use of the auxiliary fields. We 
have introduced these fields by the definitions (2.6), from which we may show that they 
satisfy the normal ordered z s  equation 

(dldx - &)Q = i cQ2q  (d/dx + $i5)02 = -icqtQ1 (4.1) 

with the same for 6, X, and 2. It follows also from (2.6) that 

and 

Now we wish to set x = x'  in these commutators and, as Thacker and Wilkinson have 
shown, this is easy to do once we have assigned a meaning to the integral 

dx O(x)s(x). (4.4) 

The symmetric choice is one-half, leading to the following non-zero commutators: 

[wx),  WX)I  = $iccDl(x) 

[x~(x) ,  ~ ( x ) ]  = -$icXl(x) 

[a1(x) ,  Y ~ ( x ) ]  = $ica2(x) 
(4.5) 

Observe that this result implies that we cannot replace the auxiliary fields by 'asymp- 
totic forms' for large 1x1, Indeed, on using these commutators, we may rewrite the zs 
equations in anti-normal ordered form as 

(4.6) 
and now it would appear that the asymptotic forms have a different x-dependence, 
which conflicts with a relation like 

[x,(x), ~ ' ( x ) ]  = -$icx2(x). 

(d/dx -$i5+tc2)01 = icVrO2 (dldx - $6 - t c2 )@2 = -ic@lYt 

since the operators A ( [ )  and B(5)  are supposed to be independent of x, and only they 
are affected by replacing normal ordering by anti-normal ordering. In a similar way, we 
may analyse Sklyanin's proposal to extract the commutation relations of A ( [ )  and B(5)  
from a similarity argument between the differential equations for the vectors 

and 

(4.9) 
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We will not go into details here, but simply note that if we replace H1 and El2 by the 
supposed asymptotic forms which follow from (4.7), then the resulting expressions do 
not satisfy the differential equations which are obtained by neglecting terms in q ( x )  and 
Vt(x). One possible reaction to this situation is to go back to (4.4), and make a different 
choice or, equivalently, alter the relations (4.5). However, it is not difficult to show that 
the only choice which avoids the difficulties is to set all of the commutators (4.5) to zero. 
Then Sklyanin’s arguments do indeed work, to show that everything commutes which is 
useless for a quantum field theory. 

Turning to Thacker and Wilkinson’s approach utilising equations (3.10) and (3.12), 
we may set A = A ( [ ’ )  in (3.10) to find that 

(4.10) 

where ai = Qi(x, 5 ) ,  @I = Qi(x, t’), etc. Now we can use the commutation relations (4.5) 
together with the zs equation to show that 

which is also valid if (Pi and/or Xi is replaced by &i and zi respectively. This means that 
we may formally write (4.10) as 

Applying the same argument to (3.12) gives 

(4.12) 

(4.13) 

and again, on setting A = I?([‘), we find that 

(4.15) 

Assuming that we may use asymptotic forms in (4.12) leads simply to’the conclusion 
that 

[A(O, A(5’)1= 0.  (4.16) 

When we attempt the same argument for (4.13) and (4.14), we have the apparent slight 
complication that one of the terms oscillates as / x l + m ,  but this only indicates the 
presence of a delta function, exactly as when the classical Poisson brackets are 
evaluated (Zakharov and Manakov 1975). Setting this aside by restricting our attention 
to the case that 5 it t’, we have 

and 

(4.17) 

(4.18) 
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and at this point we arrive at a contradiction, since the two results together imply that 

[ - ['+ ic2 - - 5-5' 
5 - 5' -. i c2  5 - 5' 

which can only be true in the uninteresting case of no interaction (c = 0). 

(4.19) 

5. Discussion and conclusions 

In the classical field theory, IST may be used ah initio to provide a complete solution of 
the equations under very general boundary conditions. For example, in the present 
case the Poisson brackets can be evaluated in a direct manner (Zakharov and Manakov 
1975), and in fact Thacker and Wilkinson's program is essentially an attempt to 
transcribe these methods into the quantum field domain. The classical canonical 
transformation provides a new set of canonical variables in terms of which the modes of 
motion are independent but, as Kaup (1975) has explicitly verified, the use of canonical 
quantisation rules 

141, PI1 = i (5.1) 

on these new variables is not equivalent to the quantisation rules which are embodied in 
(3.2). It is not clear to us why IST leads to an impasse in the quantum case, but it may be 
related to the well known fact there are are an infinite number of non-unitarily 
equivalent representations of the canonical quantisation rules for systems with an 
infinite number of degrees of freedom (Prugovecki 1971). This is a separate problem to 
the above-mentioned fact that the nonlinear transformations provided by IST do not 
preserve canonical quantisation. 

Returning to Sklyanin's paper, he extracts the commutation relations by defining 
A ( [ )  and B ( 5 )  via equations equivalent to (3.3) and (3.4), and then considering their 
effect on the N-particle Bethe eigenstates 

Since these functions are known to diagonalise the Hamiltonian, this procedure must be 
sound, although it suffers from the disadvantage that the solution to the corresponding 
N- body problem is needed before the correct commutation relations may be derived. 
The alternative approach (Sklyanin et af 1980) is to replace the zs equations by a finite 
difference approximation over a finite interval, so that the canonical commutation 
relations may be readily realised, first at each lattice site, and then globally by 
employing finite Cartesian products. An important feature of this approach is that it 
does not suffer from the problem of treating the fields as operators rather than 
operator-valued distributions, since there are only a finite number of sites at every stage 
of the investigation. Regrettably, when the infinite limits are taken on these equations, 
the inconsistency between the commutators (4.17) and (4.18) reappears. An advantage 
of this method is that it clearly demonstrates the impossibility of asymptotic relations 
like (4.7). 

What we would like, however, is to be able to use at least some part of the classical 
theory of IST and associated methods directly in the quantum domain, without fear of 
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inconsistency. Creamer, Thacker and Wilkinson have demonstrated that such a theory 
is of immense utility. One possibility, which is at present under investigation, is to use 
the iterative methods of Rosales (1978) in a direct way. Essentially, Rosales showed 
that the iterative solutions of the equations commonly investigated with IST are all 
comparatively simple when the Fourier transform is employed. Specifically, he showed 
that the solution of the nonlinear Schrodinger equation with a repulsive potential is of 
the form 

$(x) = I d& p(&) exp(i5lx -i5:t) 

+ c 2  I d51 d52 d53 

X ~ ( 5 1 ) ~ * ( 5 2 ) ~ ( 5 3 )  exp[i(t1 - t 2 + 5 3 ) x  -i(& -5; +t:)tI  
( 5 2  - 51 - ie)(53 - 5 2  + ie) 

+.  * .  (5 .3)  

where the function p ( 5 )  is arbitrary apart from general restrictions. In its normal 
ordered form, this equation is one of the two key results of Creamer, Thacker and 
Wilkinson, once we replace p (5) by R (5) and adopt a normal ordering. We believe that 
this direct approach will lead to a theory with all the power and elegance of the work of 
Creamer, Thacker and Wilkinson, but without the disadvantage of needing to discuss 
the asymptotic behaviour of the auxiliary functions. The results of this investigation will 
be published separately when it is concluded. 
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